Resultados/Productos

PUBLICACIONES DEL PROYECTO SARAI

[1]Tamburini-Beliveau, G., Grosso-Heredia, J.A., Béjar-Pizarro, M., Pérez-López, R., Portela, J., Cismondi-Duarte, M., Monserrat,O. (2022). Assessment of ground deformation and seismicity in two areas of intense hydrocarbon production in the Argentinian Patagonia. Sci Rep 12, 19198. https://doi.org/10.1038/s41598-022-23160-6 
[2]Mirmazloumi, S. M., Gambin, A. F., Palamà, R., Crosetto, M., Wassie, Y., Navarro, J. A., … & Monserrat, O. (2022). Supervised machine learning algorithms for ground motion time series classification from InSAR data. Remote Sensing, 14(15), 3821.
[3]Palamà, R., Crosetto, M., Rapinski, J., Barra, A., Cuevas-González, M., Monserrat, O., … & Mleczko, M. (2022). A Multi-Temporal Small Baseline Interferometry Procedure Applied to Mining-Induced Deformation Monitoring. Remote Sensing, 14(9), 2182.
[4]Crosetto, M., & Solari, L. (2023). Satellite Interferometry Data Interpretation and Exploitation: Case Studies from the European Ground Motion Service (EGMS). Book published by Elsevier.
[5]Tamburini-Beliveau, G., Balbarani, S., & Monserrat, O. (2023). Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR. Natural Hazards and Earth System Sciences, 23(5), 1987-1999.
[6]M. González‐Jiménez, C. Guardiola‐Albert, P. Ezquerro, H. Aguilera, M. Béjar‐Pizarro, N. Naranjo‐Fernández, G. Bru, G. Herrera (2023). Analysis of Aquifer‐System Deformation in the Doñana Natural Space (Spain) using Unsupervised Cloud‐Computed InSAR Data and Wavelet Analysis. Water Resources Research, e2022WR033858. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022WR033858
[7]P. Ezquerro, G. Bru, I. Galindo, O. Monserrat, J.C. García-Davalillo, N. Sánchez, I. Montoya, R. Palamà, R.M. Mateos, R. Pérez-López, E. González-Alonso, R. Grandin, C. Guardiola-Albert, J. López-Vinielles, J.A. Fernández-Merodo, G. Herrera, M. Béjar-Pizarro (2023). Analysis of SAR-derived products to support emergency management during volcanic crisis: La Palma case study. Remote Sensing of Environment. 295, 113668. https://www.sciencedirect.com/science/article/pii/S0034425723002195
[8]G. Bru, P. Ezquerro, J. López-Vinielles, C. Reyes-Carmona, C. Guardiola-Albert, M. Béjar-Pizarro (2024). Manual básico sobre el uso de datos InSAR para medir desplazamientos de la superficie del terreno. IGME-CSIC. ISBN 978-84-09-62312-9. http://hdl.handle.net/10261/360969
[9]M. Alvioli, M. Loche, L. Jacobs, C.H. Grohmann, M.T. Abraham, K. Gupta, N. Satyam, G. Scaringi, T. Bornaetxea, M. Rossi, I. Marchesini, L. Lombardo, M. Moreno, S. Steger, C.A.S. Camera, G. Bajni, G. Samodra, E.E. Wahyudi, N. Susyanto, M. Sincic, S.B. Gazibara, F. Sirbu, J. Torizin, N, Schüßler, B.B. Mirus, J.B. Woodard, H. Aguilera, J. Rivera-Rivera (2024). A benchmark dataset and workflow for landslide susceptibility zonation. Earth-Science Reviews. 258, 104927. https://www.sciencedirect.com/science/article/pii/S0012825224002551
[10]G. Bru, P. Ezquerro, J.M. Azañón, R. M. Mateos, M. Tsige, M. Béjar-Pizarro, C. Guardiola-Albert (2024). Deceleration captured by InSAR after local stabilization works in a slow‑moving landslide: the case of Arcos de la Frontera (SW Spain). Landslides. https://doi.org/10.1007/s10346-024-02292-y
[11]Juan López-Vinielles, Pablo Ezquerro, Marta Béjar-Pizarro, Roberto Sarro, María Cuevas-González, Anna Barra, Rosa María Mateos (2024). Potential socio-economic impacts of ground movements in the coastal municipalities of Spain: Insights from the supra-regional implementation of the European Ground Motion Service. Ocean & Coastal Management, Volume 259, 107452, ISSN 0964-5691. https://doi.org/10.1016/j.ocecoaman.2024.107452
[12]Portela, J., Staller, A., Béjar‐Pizarro, M., Martínez‐Díaz, J. J., Álvarez‐Gómez, J. A., & Khazaradze, G. (2025). New insights on the crustal deformation in the Eastern Betics from densified GNSS data. Tectonics, 44, e2024TC008381. https://doi.org/10.1029/2024TC008381

CONGRESOS

[1]H. Aguilera Alonso, C. Guardiola-Albert, M. Béjar Pizarro, P. Ezquerro, M.P. Sanabria Pabón, C. Husillos, D. Cimpean, A. Calvo de Castro, R.M. Mateos, G. Bru, R. Sarro, J. López Vinielles, C. Reyes Carmona, J.C. García Lopez Davalillo, J. Mulas de la Peña, G. Herrera (2022) Preliminary steps on AI-based active deformation processes classification and time series forecasting. Poster pesentation at the ECMWF-ESA Workshop on Machine Learning for Earth Observation and Prediction, 14-17 November 2022 (Reading, UK) https://events.ecmwf.int/event/304/
[2]M. Béjar-Pizarro, P. Ezquerro, C. Guardiola-Albert, H. Aguilera Alonso, M.P. Sanabria Pabón, O. Monserrat, Anna Barra, C. Reyes-Carmona, R.M. Mateos, J.C. García López Davalillo, J. López Vinielles, G. Bru, R. Sarro, J.P. Galve, R. Tomás, V. Rodríguez Gómez, J. Mulas de la Peña, G. Herrera (2022) Building an InSAR-based database to support geohazard risk management by exploiting large ground deformation datasets Presentación oral EGU 2022 (Vienna, Austria) https://doi.org/10.5194/egusphere-egu22-7308
[3]G. Bru, J.J. Portela, P. Ezquerro, M.I. Navarro, A. Staller, M. Béjar-Pizarro, C. Guardiola-Albert, J.A. Fernández-Merodo, J. López-Vinielles, R. Tomás, J.M. López-Sánchez (2022) Imaging land subsidence in the Guadalentín River Basin (SE Spain) using Advanced Differential SAR Interferometry. Presentación oral 5th Joint International Symposium on Deformation Monitoring JISDM 2022 (Valencia, España)
[4]G. Bru, C. Guardiola-Albert1, P. Ezquerro, M. Béjar-Pizarro, G. Herrera, H. Aguilera. El servicio europeo de monitorización de desplazamientos del terreno, EGMS. Aplicación al estudio de la subsidencia del terreno causada por la explotación de acuíferos. Presentación oral Congreso Ibérico de las Aguas Subterráneas 2022. https://cias2022.webs.upv.es/wp-content/uploads/2022/11/LibroDeResumenes2.pdf
[5]C. Guardiola-Albert (2022) Subsidencia por explotación de aguas subterráneas en el acuífero detrítico de Madrid. Conferencia invitada. III Jornada de Medios Porosos del Capítulo Español de InterPore. https://www.youtube.com/watch?v=58WEfUVGSTw 
[6]C. Guardiola-Albert, H. Aguilera, J. Arias Patiño, J. Fullea Urchulutegui, P. Ezquerro, G. Bru (2022) Ground deformation time series prediction based on machine learning. Presentación oral EGU 2022 (Vienna, Austria) https://doi.org/10.5194/egusphere-egu22-5719
[7]J.J. Portela, M. Béjar-Pizarro, A. Staller, O. Monserrat, A. Barra, J.A. Álvarez-Gómez, D. Hernández (2022) Rapid identification of surface deformation processes in El Salvador using satellite Interferometric Synthetic-Aperture Radar. Póster Living Planet Simposium 2022 ESA https://lps22.ollyservices.com/index.php@page_id=18446&v=List&do=15&day=3997&ses=21395.html#
[8]Crosetto, M., Solari, L., Balasis-Levinsen, J., Bateson, L., Casagli, N., Comerci, V., … & Andersen, H. S. (2022). Ground Motion Examples from the European Ground Motion Service. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 5109-5112). IEEE.
[9]Crosetto, M., Solari, L., Mróz, M. (2022) “Pan-European Deformation Monitoring: The European Ground Motion Service”, Proceedings of the 5th Joint International Symposium on Deformation Monitoring – JISDM 2022, 20-22 June 2022, Valencia, Spain.
[10]Crosetto, M.; Solari, L.; Barra, A.; Monserrat, O.; Cuevas-González, M.; Palamà, R.; Wassie, Y., Shahbazi, S.; Mirmazloumi, S. M.; Crippa, B.; Mróz, M. (2022) “Analysis of the products of the Copernicus Ground Motion Service”, International Society for Photogrammetry and Remote Sensing (ISPRS) Congress 2022, Nice, France.
[11]Navarro, J. A.; García, D.; Crosetto, M., Monserrat, O. (2022) “Processing and publishing the active deformation areas of all Europe – Concept and first implementation steps for a low-cost solution”, International Society for Photogrammetry and Remote Sensing (ISPRS) Congress 2022, Nice, France.
[12]Shahbazi, S.; Crosetto, M.; Barra, A. (2022) “Ground deformation analysis using basic products of the Copernicus Ground Motion Service”, International Society for Photogrammetry and Remote Sensing (ISPRS) Congress 2022, Nice, France.
[13]Crosetto, M., Shahbazi, S., Cuevas-González, M., Navarro, J. A. (2023) Advanced analysis tools for the European Ground Motion Service data. In Proceedings of The ISPRS Geospatial Week 2023 (Egypt GSW’2023), Cairo, Egypt.
[14]Shahbazi, S., Barra, A., Navarro, J. A., Crosetto, M. (2023) From EGMS data to a differential deformation map for buildings at continent Level. In Proceedings of CENTERIS – International Conference on ENTERprise Information Systems / ProjMAN – International Conference on Project MANagement / HCist – International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal.
[15]J. Rivera-Rivera, M. Béjar-Pizarro, H. Aguilera Alonso, C. Guardiola-Albert, C. Husillos, P. Ezquerro, A. Barra, Rosa, R.M. Mateos, María. Cuevas-González, R. Sarro, O. Monserrat, M. Martínez-Corbella, M. Crosetto, J. López-Vinielles. Automatic Classification of Active Deformation Areas in SE Spain Based on SAR Data and Environmental Covariates using Machine Learning. Oral Presentation CIGEO 2023 (Madrid, Spain). https://eventos.upm.es/94377/programme/iv-congreso-en-ingenieria-geomatica-cigeo-2023.html 
[16]J. Rivera-Rivera, J. Arias Patiño, H. Aguilera Alonso, C. Guardiola-Albert, M. Béjar-Pizarro. FORECASTING DEFORMATION TRIGGERED BY GROUNDWATER EXTRACTION USING PS-InSAR TIME SERIES. APPLYING MACHINE LEARNING AND STATISTICAL MODELS IN THE MADRID AQUIFER (SPAIN). Poster Presentation EGU 2023 (Vienna, Austria). https://doi.org/10.5194/egusphere-egu23-15915 
[17]H. Aguilera Alonso, J. Rivera-Rivera, C. Guardiola-Albert, M. Béjar-Pizarro. Ensemble learning on the benchmark dataset for landslide susceptibility zonation in Central Italy. Oral Presentation EGU 2023 (Vienna, Austria). Abstract EGU23-16251 (copernicus.org) 
[18]Bru, G., González, P.J., Ezquerro, P., Béjar-Pizarro, M., García-Davalillo, J.C., Fernández-Merodo, J.A., Guardiola-Albert, C., Palamà, R., Monserrat, O. (2023) Measuring post emplacement lava deformation in La Palma with InSAR. FRINGE (Space radar advances and applications) 2023 (Leeds, UK). https://fringe2023.esa.int/
[19]Portela, J., Béjar-Pizarro, M., Staller, A., Hamling, I.J.,  Cosenza-Muralles, B., Hernández, D. (2023). Integrating InSAR and GNSS Data for a New Tectonic Block Model in El Salvador. FRINGE (Space radar advances and applications) 2023 (Leeds, UK). https://fringe2023.esa.int/
[20]G. Bru, P. Ezquerro, J.M. Azañón, R. Mateos, M. Tsige, M. Béjar-Pizarro and C. Guardiola-Albert (2024). Assessing the Impact of Stabilization Measures on a Slow-Moving Landslide in Arcos de La Frontera town (SW Spain) using InSAR. Poster presentation EGU 2024 (Vienna, Austria). EGU24-15817. https://doi.org/10.5194/egusphere-egu24-15817. https://meetingorganizer.copernicus.org/EGU24/EGU24-15817.html 
[21]P. Ezquerro Martín, G. Bru Cruz, I. Galindo, O. Monserrat, J.C. López-Davalillo, N. Sánchez, I. Montoya, R. Palamà, R.M. Mateos, R. Pérez-López, E. González-Alonso, R. Grandin, C. Guardiola-Albert, J. López-Vinielles, J.A. Fenández-Merodo, G. Herrera, M. Béjar-Pizarro (2024). Monitoring of La Palma 2021 volcanic eruption using Interferometric and Amplitude SAR data. EGU 2024. https://meetingorganizer.copernicus.org/EGU24/EGU24-17922.html
[22]C. Guardiola-Albert, N. Naranjo-Fernández, J. Rivera-Rivera, J.M. Gómez Fontalva, H. Aguilera, F. Ruíz-Bermudo, M. Rodríguez-Rodríguez (2024). Assessment of groundwater storage variation at aquifer scale with ready-to-use GRACE Satellite Data: Spanish study cases. EGU 2024. https://meetingorganizer.copernicus.org/EGU24/EGU24-12755.html
[23]J. Rivera-Rivera, M. Béjar Pizarro, H. Aguilera, P. Ezquerro, C. Guardiola-Albert, O. Monserrat (2024). Automated classification of ground deformation processes in Spain: a machine learning approach using a novel national InSAR-based database. EGU 2024. https://meetingorganizer.copernicus.org/EGU24/EGU24-8369.html
[24]G. Bru, P. Ezquerro, M. Béjar-Pizarro, C. Guardiola-Albert, J.A. Fernández-Merodo, J. Enrique Hornero Díaz, G. Herrera (2024). InSAR-based assessment of land subsidence related to aquifer overexploitation in Spain: a comprehensive review. Oral presentation 2024 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium. https://2024.m2garss.org/view_paper.php?PaperNum=2113
[25]J. Rivera-Rivera, M. Béjar-Pizarro, R.M. Mateos, P. Ezquerro, R. Sarro, M. Martínez-Corbella, H. Aguilera, C. Guardiola-Albert (2024) Mapa Simplificado Preliminar de Litologías Orientado a Procesos Geológicos de España. Escala 1:50.000. Póster. XI Congreso Geológico de España
[26]M. Béjar-Pizarro, J. Rivera-Rivera, P. Ezquerro, G. Bru, D. Alfonso, J. López-Vinielles, C. Guardiola-Albert, H. Aguilera, R.M. Mateos, J.C. García-Davalillo, R. Sarro, M. Martínez-Corbella, O. Monserrat, A. Barra, M. Cuevas, J. Portela, A. Staller (2024) Caracterización de procesos geológicos activos mediante datos InSAR, utilidad del servicio EGMS de Copernicus. Ponencia oral. XI Congreso Geológico de España
[27]A. Barra, M. Cuevas, J. Navarro, P. Ezquerro, R. Palamà, M. Béjar-Pizarro, R. M. Mateos, J. López-Vinielles, J.S. Rivera, F.d.P. Urmenta-Rubira, C. Guardiola-Albert, O. Monserrat (2024) Herramientas para analizar e interpretar de forma automática los productos del European Ground Motion Service: nueva versión mejorada de las ADATools. Ponencia oral. XI Congreso Geológico de España
[28]M. Béjar-Pizarro, G. Bru, P. Ezquerro, J. Rivera-Rivera, J. López-Vinielles, R.M. Mateos, C. Guardiola-Albert, H. Aguilera, R. Sarro, M. Martínez-Corbella (2024) Datos Copernicus para la prevención y mitigación de desastres: casos de estudio del IGME-CSIC. Póster. V Congreso de Ingeniería Espacial
[29]O. Monserrat, A. Barra, M. Béjar-Pizarro, J.S. Rivera, J. Pedro Galve, C. Guardiola-Albert, M. Cuevas-González, R.M. Mateos, P. Ezquerro, J.M. Azañón, S. Shahbazi, J. Navarro, M. Crosetto, G. Luzi (2024). ADATools: herramientas gratuitas y fáciles de usar para extraer y analizar semiautomáticamente mapas de desplazamiento basados en interferometría multitemporal. Aplicaciones al European Ground Motion Service (EGMS). Presentación oral. XX Congreso de la Asociación Española de Teledetección
[30]G. Bru, C. Guardiola-Albert, M. Béjar-Pizarro, P. Ezquerro, M. González-Jiménez, H. Aguilera (2024). Procesamiento de datos InSAR en Doñana: Monitoreo de cambios en el acuífero Almonte-Marismas. Presentación oral. XX Congreso de la Asociación Española de Teledetección
[31]C. Husillos Rodríguez, C. Guardiola-Albert, M. Béjar-Pizarro, H. Aguilera Alonso, P. Ezquerro, A. Prieto Martín (2024). Aplicación web para el acceso al histórico de medidas de precipitación de la AEMET y a las medidas de piezometría en la Península Ibérica y Baleares. Presentación oral. Congreso Ibérico de Aguas Subterráneas 2024
[32]G. Bru, M. Béjar-Pizarro, P. Ezquerro, J.S. Rivera, R.M. Mateos, A. Barra, O. Monserrat, H. Aguilera, C. Guardiola-Albert (2024) Estudio de la subsidencia por sobreexplotación de acuíferos a escala nacional. Póster. Congreso Ibérico de Aguas Subterráneas 2024
[33]G. Bru, P. Ezquerro, J. López-Vinuelles, C. Reyes Carmona, C. Guardiola-Albert, M. Béjar-Pizarro (2024) Manual básico sobre el uso datos InSAR para medir desplazamientos de la superficie del terreno. Presentación oral. Congreso Ibérico de Aguas Subterráneas 2024

PUBLICACIONES DEL EQUIPO SARAI RELACIONADAS CON EL PROYECTO

[1]Aguilera, H.; Guardiola-Albert, C.; Naranjo-Fernández, N. (2019) Towards flexible groundwater-level prediction for adaptive water management: using Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64: 1504-1518. https://doi.org/10.1080/02626667.2019.1651933.
[2]Aguilera, H.; Guardiola-Albert, C.; Serrano-Hidalgo, C (2020). Estimating extremely large amounts of missing precipitation data. Journal of Hydroinformatics. jh2020127. https://doi.org/10.2166/hydro.2020.127.
[3]Aguilera, H.; Guardiola-Albert, C.; Moreno Merino, L.; Baquedano, C.; Robledo Ardila, A.P.; Durán Valsero, J.J. (2022). Building low-cost soil hydraulic conductivity maps for land planning based on machine learning and geostatistics. Catena. https://doi.org/10.1016/j.catena.2021.105788.
[4]Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Scarascia Mugnozza, G. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883.
[5]Barra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., Mateos, R.M., Ligüerzana,S., López, C. , Moretti, S. (2017). A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images images. Remote Sensing, 2017, 9, 1002.
[6]Béjar-Pizarro, M., Notti, D., Mateos, R.M.; Ezquerro, P., Centolanza, G., Herrera, G., Bru, G., Sanabria, M., Solari, L., Duro, J. and Fernández, J. (2017a). Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1 InSAR data. Remote Sensing, 9(9), 876.
[7]Béjar-Pizarro, M., Ezquerro, P., Herrera, G., Tomás, R., Guardiola-Albert, C., Ruiz Hernández, J.M., Fernández Merodo, J.A., Marchamalo, M., Martínez, R. (2017b). Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology, 547, 678–689.
[8]Béjar-Pizarro, M., Álvarez Gómez, J.A., Staller, A., Luna, M.P., Pérez-López, R., Monserrat, O., Chunga, K., Lima, A., Galve, J.P., Martínez Díaz, J.P., Mateos, R.M., and Herrera, G. (2018). InSAR-based mapping to support decision-making after an earthquake. Remote Sensing, 10, 899.
[9]Crosetto, M., Monserrat, O., Iglesias, R., Crippa, B., 2010. “Persistent Scatterer Interferometry: potential, limits and initial C- and X-band comparison”. Special Issue “High-resolution Earth imaging from geospatial information” of Photogrammetric Engineering and Remote Sensing, Vol. 76, N. 9, pp. 1061-1069.
[10]Crosetto, M., Monserrat, O., Cuevas-González, M. Devanthéry, N., Crippa, B., (2016). Persistent Scatterer Interferometry: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78-89.
[11]Crosetto, M., Solari, L., Mróz, M., Balasis-Levinsen, J., Casagli, N., Frei, M., Oyen, A., Moldestad, D.A., Bateson, L., Guerrieri, L. and Comerci, V., 2020. The evolution of wide-area DInSAR: From regional and national services to the European ground motion service. Remote Sensing, 12(12), p. 2043.
[12]Ezquerro, P., Tomás, R., Béjar-Pizarro, M, Fernández-Merodo, J.A , C. Guardiola-Albert, A. Staller, J.A. Sánchez-Sobrino, G. Herrera (2020). Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities. Science of the Total Environment, Vol. 703, 10.e.
[13]Fernández-Ayuso, A.; Aguilera, H.; Guardiola-Albert, C.; Rodríguez-Rodríguez, M.; Heredia, J.; Naranjo-Fernández, N. (2019) Unraveling the Hydrological Behavior of a Coastal Pond in Doñana National Park (Southwest Spain). Groundwater, 57 (6): 895-906. https://doi.org/10.1111/gwat.12906.
[14]Herrera, G., P. Ezquerro, R. Tomás, M. Béjar-Pizarro et al. (2020). Mapping the global threat of land subsidence. Science. 371 (6524), https://doi.org/10.1126/science.abb8549.
[15]López-Vinielles, J., Ezquerro, P., Fernández-Merodo, J.A., Béjar-Pizarro, M., Monserrat, O., Barra, A., Blanco. P., García-Robles, J., Filatov, A., García-Davalillo, J.C., Sarro, R., Mulas, J., Mateos, R.M., Azañón, J.M., Galve, J.P., Herrera, G. (2020). Remote analysis of an open-pit slope failure: Las Cruces case. Landslides, 17 (9): 1-16. https://doi.org/10.1007/s10346-020-01413-7.
[16]Martínez-Díaz, J.J., Béjar-Pizarro, M., Álvarez-Gómez, J.A., Mancilla, F.L., Stich, D., Herrera, G., Morales, J. (2012). Tectonic and seismic implications of an intersegment rupture: The damaging May 11th 2011 Mw 5.2 Lorca, Spain, earthquake. Tectonophysics 546-547, 28-37.
[17]Mateos, R.M., Azañón, J.M., Roldán, F.J., Notti, D., Pérez-Peña, V., Galve, J.P., Pérez- García, J., Colomo, C.M., Gómez-López, J.M., Montserrat, O., Devantèry, N., Lamas-Fernández, F., Fernández-Chacón, F. (2016). The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides. DOI https://doi.org/10.1007/s10346-016-0723-5.
[18]Mateos, R.M., Ezquerro, P., Luque-Espinar, J.A., Béjar-Pizarro, M., Notti, D., Azañón, J.M., Montserrat, O., Herrera, G., Fernández-Chacón, F., Peinado, T., Galve, J.P., Pérez-Peña, V., Fernández-Merodo, J.A., Jiménez, J. (2017). Multiband PSInSAR and long-period monitoring of land subsidence in a strategic detrital aquifer (Vega de Granada, SE Spain): An approach to support management decisions. Journal of Hydrology 553, 71–87.
[19]Monserrat, O., Crosetto, M., Cuevas, M. and Crippa, B. (2011). “The Thermal Expansion Component of Persistent Scatterer Interferometry Observations”. IEEE Geoscience and Remote Sensing Letters, 8 (5), September 2011.
[20]Naranjo-Fernández, N.; Guardiola-Albert, C.; Aguilera, H.; Serrano-Hidalgo, C.; Montero-González, E. (2020) Clustering Groundwater Level Time Series of the Exploited Almonte-Marismas Aquifer in Southwest Spain. Water, 12, 1063. https://doi.org/10.3390/w12041063.
[21]Navarro, J. A., Tomás, R., Barra, A., Pagán, J. I., Reyes-Carmona, C., Solari, L., … & Crosetto, M. (2020). ADAtools: Automatic Detection and Classification of Active Deformation Areas from PSI Displacement Maps. ISPRS International Journal of Geo-Information, 9(10), 584.
[22]Solari, L., Barra, A., Herrera, G., Bianchini, S., Monserrat, O., Béjar-Pizarro, M., Crosetto, M., Sarro, R., Moretti, S. (2017). Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomatics, Natural Hazards and Risk. DOI: https://doi.org/10.1080/19475705.2017.1413013.

PLAN DE GESTIÓN DE DATOS

Descargable en PDF pulsando sobre este enlace.